An Influence of a Basic Side Chain Moiety on the Tautomer Ratio between the Enamine and Methylene Imine Forms in Azole Condensed Quinoxalines

Yoshihisa Kurasawa*, Yuko Matsumoto, Aiko Ishikura, Kazue Ikeda,

Tomoyoshi Hosaka and Atsushi Takada

School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108, Japan

Ho Sik Kim

Department of Chemistry, Hyosung Women's University, Gyongsan 713-900, Korea

Yoshihisa Okamoto

Division of Chemistry, College of Liberal Arts and Sciences, Kitasato University, Kitasato, Sagamihara, Kanagawa 228, Japan Received May 13, 1993

Dedicated to the memory of Dr. Roland K. Robins

The reaction of 7-chloro-4-(2-cyano-2-hydroxyvinyl)tetrazolo[1,5-a]quinoxaline 2a with 4-aminopyridine, p-toluidine or p-aminophenol gave 7-chloro-4-(4-pyridylcarbamoylmethylene)-4,5-dihydrotetrazolo[1,5-a]quinoxaline 7a. 7-chloro-4-(p-tolylcarbamoylmethylene)-4,5-dihydrotetrazolo[1,5-a]quinoxaline 8a or 7-chloro-4(p-hydroxyphenylcarbamoylmethylene)-4,5-dihydrotetrazolo[1,5-a]quinoxaline 9a, respectively. The reaction of 7-chloro-4-(2-cyano-2-hydroxyvinyl)-1,2,4-triazolo[4,3-a]quinoxaline 2b with 4-aminopyridine, p-toluidine or p-aminophenol afforded 7-chloro-4-(4-pyridylcarbamoylmethylene)-4,5-dihydro-1,2,4-triazolo-[4,3-a]quinoxaline 7b, 7-chloro-4-(p-tolylcarbamoylmethylene)-4,5-dihydro-1,2,4-triazolo[4,3-a]quinoxaline 8b or 7-chloro-4(p-hydroxyphenylcarbamoylmethylene)-4,5-dihydro-1,2,4-triazolo[4,3-a]quinoxaline 9b, respectively. The reaction of compound 2a with 2-aminopyridine or 3-aminopyridine provided 7-chloro-4-(2-pyridylcarbamoylmethylene)-4,5-dihydrotetrazolo[1,5-a]quinoxaline 10 or 7-chloro-4-(3-pyridylcarbamoylmethylene)-4,5-dihydrotetrazolo[1,5-a]quinoxaline 11, respectively. Compounds 7a,b (4-pyridylcarbamoyl) predominated as the enamine tautomer A in a trifluoroacetic acid solution, while compounds 8a,b (p-tolylcarbamoyl) and compounds 9a,b (p-hydroxyphenylcarbamoyl) coexisted as the enamine A and methylene imine B tautomers in a trifluoroacetic acid solution. Moreover, the ratio of the enamine tautomer A elevated in an order of compound 11 (3-pyridylcarbamoyl), compound 10 (2-pyridylcarbamoyl) and compound 7a (4-pyridylcarbamoyl), reflecting an order of the increase in the pKa values of the aminopyridine side chain moieties. In general, the ratio of the enamine tautomer A was higher in the basic carbamoyl derivatives 7-11 than in the neutral ester derivatives 3a.b. From these results, the basic side chain moiety of the tetrazolo[1,5-a]quinoxalines 7a-11 or 1,2,4-triazolo[4,3-a]quinoxalines 7b-9b was found to increase the ratio of the enamine tautomer A in trifluoroacetic acid media.

J. Heterocyclic Chem., 30, 1463 (1993).

In a previous paper [1], we reported that the reaction of the tetrazolo[1,5-a]quinoxaline 5-oxide 1a or 1,2,4-triazolo-[4,3-a]quinoxaline 5-oxide 1b with 2-chloroacrylonitrile resulted in the 1,3-dipolar cycloaddition reaction followed by cyano group migration to give the enol type acyl cyanide 2a or 2b, respectively (Chart). The alcoholysis of compounds 2a,b [1] or aminolysis of compound 2a [2] with ethanol or o-aminophenol afforded the esters 3a,b or amide 4, respectively. These esters 3a,b and amide 4 showed the interesting tautomeric equilibria between the enamine A and methylene imine B forms in a dimethyl sulfoxide or

trifluoroacetic acid solution (Scheme 1). On the other

hand, the lactam type 3-ethoxycarbonylmethylenequinoxaline 5 [3] and 3-triazolylmethylenequinoxalines 6 [4] (Chart) also exhibited the above tautomeric equilibria between two forms A and B in a dimethyl sulfoxide or trifluoroacetic acid solution. The tautomer ratio of A to B in a dimethyl sulfoxide solution was not significantly varied between compounds 3a,b and compounds 5,6, but the tautomer ratio of A to B in a trifluoroacetic acid solution was considerably different between compounds 3a,b and compounds 5,6 (Table 1). Namely, the lactam type quinoxalines 5,6 predominantly existed as the B form in a trifluoroacetic acid solution, while the azole ring condensed quinoxaline esters 3a,b coexisted as the A and B

Y. Kurasawa, Y. Matsumoto, A. Ishikura, K. Ikeda, T. Hosaka, A. Takada, H. S. Kim and Y. Okamoto

Table 1
Tautomer Ratio between the Enamine A and Methylene Imine B Forms for Compounds 3-6

		Tautomer Ratio			
Compound	Solvent	A	В		
3a	TFA-d ₁ [a]	50	50 [c]		
3b	TFA-d ₁	67	33 [c]		
4	TFA-d ₁	60	40 [d]		
5	TFA [b]	0	100 [e]		
6	TFA	0	100 [f]		

[a] Deuteriotrifluoroacetic acid. [b] Trifluoroacetic acid. [c] Reference [1]. [d] Reference [2]. [e] Reference [3]. [f] Reference [4].

forms in a trifluoroacetic acid solution. Thus, we found that the azole ring condensed quinoxalines 3a,b was quite different from the lactam type quinoxalines 5,6 concerning the tautomerism between the A and B forms in a trifluoroacetic acid solution. Moreover, the tautomer ratio between the A and B forms varied among compounds 3a, 3b and 4. That is, the ratio of the tautomer A increased in an order of compound 3a (50%), 4 (60%) and 3b (67%). These data indicated that the above tautomer ratio of A to B would depend on a pKa value of individual compounds. Accordingly, we undertook the synthesis of the tetrazolo-[1,5-a]quinoxalines and 1,2,4-triazolo[4,3-a]quinoxalines such as compounds 7-11 (Schemes 2 and 3), bearing diverse basic side chain moieties with various pKa values, and examined whether the side chain moiety with differ-

ent pKa values could vary the tautomer ratio of A to B. This paper describes the synthesis of novel compounds 7-11 and the control of the tautomer ratio of A to B by the side chain moieties.

Scheme 2

CI OH NH2

$$X=N$$
 $X=N$
 $X=N$

Scheme 3

$$\begin{array}{c} \text{NC} & \text{OH} \\ \text{NC} & \text{NC} & \text{OH} \\ \text{NC} & \text{NC} & \text{NC} & \text{NC} \\ \text{NC} &$$

The reaction of 7-chloro-4-(2-cyano-2-hydroxyvinyl)tetrazolo[1,5-a]quinoxaline 2a or 7-chloro-4-(2-cyano-2-hydroxyvinyl)-1,2,4-triazolo[4,3-a]quinoxaline 2b with 4-aminopyridine gave 7-chloro-4-(4-pyridylcarbamoylmethylene)-4,5-dihydrotetrazolo[1,5-a]quinoxaline 7a or 7-chloro-4-(4-pyridylcarbamoylmethylene)-4,5-dihydro-1,2,4-triazolo[4,3-a]quinoxaline 7b, respectively, while the reaction of compound 2a or 2b with p-toluidine provided 7-chloro-4-(p-tolylcarbamoylmethylene)-4,5-dihydrotetrazolo[1,5-a]quinoxaline 8a or 7-chloro-4-(p-tolylcarbamoylmethylene)-4,5-dihydrotetrazolo[1,5-a]quinoxaline 2). Similarly, the reaction of compound 2a or 2b with p-aminophenol furnished 7-chloro-4-(p-hydroxyphenylcarbamoylmethylene)-4,5-dihydrotetrazolo[1,5-a]quinoxaline 9a or 7-chloro-4-(p-hydroxyphenylcarbamoylmethyl-

Table 2
NMR Spectral Data of Compounds 7a, 8a and 9a in Deuteriotrifluoroacetic Acid

Compound	Tauto Rati		Ta	Chemic	al Shifts (δ ppm) (Co	upling Constant, T	Hz) automer B			
	A	В	C ₆ -H	C ₈ -H	C ₉ -H	Me	C ₆ -H	C ₈ -H	C9-H	Me	Others
7a	100	0	7.19 (s)	6.98 (d, 9.0)	7.79 (d, 9.0)	-	-	-	-	-	8.13 (d, 7.0), 7.88 (d, 7.0)
8a	67	33	[a]	[a]	7.98 (d, 8.0)	2.17 (s)	8.22 (s)	7.82 (d, 8.0)	8.47 (d, 8.0)	2.10 (s)	7.20-6.90
9a	60	40	[a]	[a]	8.06 (d, 8.5)	-	8.30 (s)	7.91 (d, 8.5)	8.55 (d, 8.5)	-	7.35-7.10, 7.00-6.80

[a] Overlapped with other signals.

Table 3

NMR Spectral Data of Compounds 7b, 8b and 9b in Deuteriotrifluoroacetic Acid

Compound	Tauto Rat		Chemical Shifts (δ ppm) (Coupling Constant, Hz) Tautomer A Tautomer B										
	A	В	C ₁ -H	C ₆ -H	C ₈ -H	C ₉ -H	Me	C ₁ -H	C ₆ -H	C ₈ -H	C9-H	Me	Others
7 b	100	0	10.02 (s)	7.23 (s)	7.01 (d, 8.5)	7.58 (d, 8.5)	-	-	-	-	-	_	8.14 (d, 6.0), 7.91 (d, 6.0)
8b	79	21	9.94 (s)	7.48 (d, 2.0)	7.28 [a]	7.84 (d, 9.0)	2.01 (s)	10.22 (s)	8.01 (d, 2.0)	7.62 [a]	8.04 (d, 9.0)	1.95 (s)	7.10-7.02, 6.98-6.80
9b	76	24	9.96 (s)	[b]	[b]	7.54 (d, 9.0)	-	10.26 (s)	8.05 (s)	7.67 (d, 9.0)	8.09 (d, 9.0)	_	7.14-6.88, 6.80-6.60

[a] (dd, 2.0, 9.0). [b] Overlapped with other signals.

(1)

Scheme 4

CI
$$N \stackrel{\wedge}{\bigoplus} N \stackrel{\wedge}{\bigcup} 2 CF_3COO$$

A $7a \times = N$

A $7b \times = CH$

B

(2)

$$CI \stackrel{\wedge}{\bigvee} N \stackrel{\wedge}{\bigcup} N \stackrel{\vee}{\bigcup} 2 CF_3COO$$

A $8a \times = N$

B $CI \stackrel{\wedge}{\bigvee} N \stackrel{\wedge}{\bigcup} N \stackrel{\vee}{\bigcup} CF_3COO$

A $8b \times = CH$

B

(3)

$$CI \stackrel{\wedge}{\bigvee} N \stackrel{\wedge}{\bigcup} N \stackrel{\vee}{\bigcup} CF_3COO$$

A $8b \times = CH$

B

$$CI \stackrel{\wedge}{\bigvee} N \stackrel{\vee}{\bigcup} N \stackrel{\vee}{\bigcup} CF_3COO$$

A $8b \times = CH$

B

$$CI \stackrel{\wedge}{\bigvee} N \stackrel{\vee}{\bigcup} N \stackrel{\vee}{\bigcup} CF_3COO$$

$$X \stackrel{\wedge}{\bigvee} N \stackrel{\vee}{\bigcup} N \stackrel{\vee}{\bigcup} CF_3COO$$

A $9a \times = N$

B $9b \times = CH$

B

Deuterized Species and Tautomeric Equilibria of Compounds 7-9 in Deuteriotrifluoroacetic Acid Y. Kurasawa, Y. Matsumoto, A. Ishikura, K. Ikeda, T. Hosaka, A. Takada, H. S. Kim and Y. Okamoto

Scheme 5

$$(1)$$

$$CI \longrightarrow N \longrightarrow N \longrightarrow D$$

$$A$$

$$CI \longrightarrow N \longrightarrow N \longrightarrow D$$

$$A$$

$$10 (2-pyridyl)$$

$$11 (3-pyridyl)$$

$$B$$

$$CI \longrightarrow N \longrightarrow N \longrightarrow D$$

$$CI \longrightarrow N \longrightarrow D$$

$$N \longrightarrow$$

Deuterized Species and Tautomeric Equilibria of Compounds 4, 10 and 11 in Deuteriotrifluoroacetic Acid

Table 4

NMR Spectral Data of Compounds 4, 10 and 11 in Deuteriotrifluoroacetic Acid

Compounds	Tauto Rat		Ta	Chemical automer A	Shifts (δ ppm	(Coupling)			
	A	В	C ₆ -H	C ₈ -H	C ₉ -H	C ₆ -H	C ₈ -H	C ₉ -H	Others	
10	83	17	7.26 (d, 2.0)	7.15 (b)	7.95 (d, 9.0)	[a]	[a]	8.24 (d, 9.0)	8.10 (d, 7.0), 7.31-7.21	
11	68	32	7.21	[b] 7.03	7.86	8.06	[a]	8.26	9.27 (s), 8.42-8.15, 7.78-7.65	
4	60	40	(s) [a]	(d, 8.5) [a]	(d, 8.5) 8.01 (d. 8.5)	(s) 8.26 (s)	7.86 (d. 8.5)	(d, 8.5) 8.50 [c] (d, 8.5)	7.40-6.80	

[2] Overlapped with other signals. [b] (dd, 2.0, 9.0). [c] Already reported in reference [2].

Table 5

Tautomer Ratio between the Enamine A and Methylene Imine B Forms for Compounds 7a, 10 and 11 in Deuteriotrifluoroacetic Acid

Compound	Aminopyridine Moiety (First pKa in Water) [a]	Tautome A	r Ratio B	
7a	4-Aminopyridine (9.17)	100	0	
10	2-Aminopyridine (6.86)	83	17	
11	3-Aminopyridine (5.98)	68	32	

[a] Reference [9].

ene)-4,5-dihydro-1,2,4-triazolo[4,3-a]quinoxaline 9b, respectively. The reaction of compound 2a with 2-aminopyridine or 3-aminopyridine gave 7-chloro-4-(2-pyridylcarbamoylmethylene)-4,5-dihydrotetrazolo[1,5-a]quinoxaline 10 or 7-chloro-4-(3-pyridylcarbamoylmethylene)-4,5-dihydrotetrazolo[1,5-a]quinoxaline 11, respectively (Scheme 3).

The structural assignment of novel compounds 7-11 was based on the spectral and analytical data. Most of compounds 7-11 were insoluble in deuteriodimethyl sulfoxide,

and their nmr spectra were measured in deuteriotrifluoroacetic acid (Tables 2, 3, 4). The protonated species of 1,2,4-triazoles, imidazoles, oxazoles and other azoles in a trifluoroacetic acid solution have already been reported by some research groups [5-7], and hence the protonated species of compounds 7-11 shown in Schemes 4 and 5 would be formed in a deuteriotrifluoroacetic acid solution. The tautomer ratio of A to B was calculated from the integral ratio of the C₆-H, C₈-H or C₉-H proton signal [8] in the tetrazolo[1,5-a]quinoxalines 7a-11 and 1,2,4-triazolo-[4.3-alguinoxalines 7b-9b, since the vinyl and methylene proton signals were not observed because of D-H exchange as shown in Schemes 4 and 5. The integral ratio of the C₁-H (compounds **7b-9b**) or methyl (compounds **8a,b**) proton signal was also helpful for the calculation of the tautomer ratio.

The data of Tables 2 and 3 exhibited that compounds 7a,b having a 4-pyridylcarbamoyl group predominantly

existed as the enamine tautomer A [A%: 100 (both 7a,b)] [Scheme 4, (1)], while compounds 8a,b bearing a p-tolylcarbamovl group and compounds **9a,b** possessing a p-hydroxyphenylcarbamoyl group coexisted as the tautomers **A** and B[A/B%: 67/33 (8a), 79/21 (8b), 60/40 (9a), 76/24(9b)] [Scheme 4, (2), (3)]. The ratio of the tautomer A was rather higher in compounds 8a,b with a p-tolylcarbamoyl group than in compounds **9a.b** with a p-hydroxyphenylcarbamoyl group [A%: 67/60 (8a/9a); 79/76 (8b/9b)], wherein the phenol group of compounds 9a,b might slightly lower the pKa in comparison with the p-tolyl group of compounds 8a,b. The data of Table 4 likewise represented that the ratio of the tautomer A was higher in compound 10 with a 2-pyridylcarbamoyl group [Scheme 5, (1)] than in compound 4 with an o-hydroxycarbamoyl group [Scheme 5, (2)] [A%: 83/60 (10/4)]. On the other hand, the data of Table 5 showed that the ratio of the tautomer A augmented in an order of compound 11 (68%), compound 10 (83%) and compound 7a (100%), which reflected an order of the increase in the pKa values of the aminopyridine moieties [first pKa: 11 (3-aminopyridine, 5.98), 10 (2-aminopyridine, 6.86), 7a (4-aminopyridine, 9.17) [9]. In addition, the ratio of the tautomer A was also higher in compounds 7-11 having a carbamoyl group than in compounds 3a,b possessing an ester group $[A\%: 100-60/50 \ (7a-11/3a), \ 100-76/67 \ (7b-9b/3b)].$ Thus, an increase in the pKa value of the azole condensed quinoxaline derivatives was found to elevate the ratio of the enamine tautomer A in a trifluoroacetic acid solution. In other words, the pKa value of the side chaine moiety might control the tautomer ratio of A to B in a trifluoroacetic acid solution.

EXPERIMENTAL

All melting points were determined on a Yazawa micro melting point BY-2 apparatus and are uncorrected. The ir spectra (potassium bromide) were recorded with a JASCO IRA-1 spectrophotometer. The nmr spectra were measured in deuteriotrifluoroacetic acid with a VXR-300 spectrometer at 300 MHz. The mass spectra (ms) were determined with a JEOL JMS-01S spectrometer. Elemental analyses were performed on a Perkin-Elmer 240B instrument.

7-Chloro-4-(4-pyridylcarbamoylmethylene)-4,5-dihydrotetrazolo-[1,5-a]quinoxaline 7a.

A solution of compound **2a** (2 g, 7.34 mmoles) and 4-aminopyridine (1.03 g, 11.0 mmoles) in dioxane (100 ml)/N,N-dimethylformamide (50 ml) was refluxed in an oil bath for 1 hour to give a clear solution. The solution was evaporated *in vacuo* to afford yellow needles **7a**, which were triturated with hot N,N-dimethylformamide/ethanol and collected by suction filtration to obtain an analytically pure sample (1.17 g, 47%), mp 290° dec; ir: ν cm⁻¹ 1655, 1630, 1580, 1510; ms: m/z 339 (M*), 341 (M* + 2).

Anal. Calcd. for $C_{16}H_{11}CIN_8O$: C, 52.40; H, 3.02; Cl, 9.67; N, 30.55. Found: C, 52.11; H, 3.03; Cl, 9.90; N, 30.60.

7-Chloro-4-(4-pyridylcarbamoylmethylene)-4,5-dihydro-1,2,4-triazolo[4,3-a]quinoxaline 7b.

A solution of compound **2b** (2 g, 7.37 mmoles) and 4-aminopyridine (1.04 g, 11.1 mmoles) in dioxane (100 ml)/N,N-dimethylformamide (50 ml) was refluxed in an oil bath for 2 hours to precipitate yellow needles **7b**, which were collected by suction filtration and washed with ethanol to give an analytically pure sample (1.17 g, 47%), mp 330° dec; ir: ν cm⁻¹ 1650, 1620, 1570, 1520, 1510; ms: m/z 338 (M*), 340 (M* + 2).

Anal. Calcd. for C₁₆H₁₁ClN₆O: C, 56.73; H, 3.27; Cl, 10.46; N, 24.81. Found: C, 56.65; H, 3.46; Cl, 10.55; N, 24.59.

7-Chloro-4-(p-tolylcarbamoylmethylene)-4,5-dihydrotetrazolo[1,5-a]quinoxaline 8a.

A solution of compound **2a** (2 g, 7.34 mmoles) and p-toluidine (1.18 g, 11.0 mmoles) in dioxane (100 ml) was refluxed in an oil bath for 2 hours to give a clear solution. The solvent was evaporated in vacuo to afford yellow crystals **8a**, which were collected by suction filtration (0.84 g, 32%). Recrystallization from dioxane/ethanol provided yellow needles, mp 270-271°; ir: ν cm⁻¹ 1645, 1615, 1580, 1530, 1510; ms: m/z 352 (M*), 354 (M* + 2).

Anal. Calcd. for $C_{17}H_{13}CIN_6B$: C, 57.88; H, 3.71; Cl, 10.05; N, 23.82. Found: C, 57.91; H, 3.92; Cl, 10.16; N, 23.59.

7-Chloro-4-(p-tolylcarbamoylmethylene)-4,5-dihydro-1,2,4-triazolo[4,3-a]quinoxaline **8b**.

A solution of compound **2b** (2 g, 7.37 mmoles) and p-toluidine (1.19 g, 11.1 mmoles) in dioxane (70 ml)/dimethyl sulfoxide (30 ml) was refluxed in an oil bath for 2 hours to give a clear solution. Dioxane was evaporated in vacuo, and ethanol and water were added to the residual dimethyl sulfoxide solution under heating on a boiling water bath. The solution was allowed to stand at room temperature to precipitate yellow needles **8b**, which were collected by suction filtration and washed with ethanol to provide an analytically pure sample (1.59 g, 61%), mp 277-278°; ir: ν cm⁻¹ 1635, 1605, 1575, 1520; ms: m/z 351 (M*), 353 (M* + 2).

Anal. Calcd. for C₁₈H₁₄ClN₅O: C, 61.46; H, 4.01; Cl, 10.08; N, 19.91. Found: C, 61.33; H, 4.18; Cl, 10.15; N, 20.03.

7-Chloro-4-(p-hydroxyphenylcarbamoylmethylene)-4,5-dihydrotetrazolo[1,5-a]quinoxaline 9a.

A solution of compound **2a** (2 g, 7.34 mmoles) and p-aminophenol (1.20 g, 11.0 mmoles) in dioxane (100 ml) was refluxed in an oil bath for 1 hour to give a clear solution. The solvent was evaporated in vacuo to afford yellow crystals **9a**, which collected by suction filtration (1.60 g, 62%). Recrystallization from dioxane gave yellow needles, mp 268-269°; ir: ν cm⁻¹ 3320, 1640, 1605, 1590, 1580, 1540, 1520, 1500; ms: m/z 354 (M*), 356 (M* + 2).

Anal. Calcd. for $C_{16}H_{11}ClN_6O_2$: C, 54.17; H, 3.13; Cl, 9.99; N, 23.69. Found: C, 54.05; H, 3.04; Cl, 10.05; N, 23.53.

7-Chloro-4-(p-hydroxyphenylcarbamoylmethylene)-4,5-dihydro-1,2,4-triazolo[4,3-a]quinoxaline 9b.

A solution of compound **2b** (2 g, 7.37 mmoles) and p-aminophenol (1.21 g, 11.1 mmoles) in dioxane (70 ml)/dimethyl sulfoxide (30 ml) was refluxed in an oil bath for 2 hours to give a clear solution. Dioxane was evaporated in vacuo, and ethanol and water were added to the residual dimethyl sulfoxide solution under heating on a boiling water bath. The solution was allowed to stand at room temperature to precipitate yellow needles **9b**, which were collected by suction filtration and washed with eth-

anol to furnish an analytically pure sample (1.46 g, 56%), mp 295-296°; ir: ν cm⁻¹ 1630, 1610, 1580, 1545, 1520; ms: m/z 353 (M⁺), 355 (M⁺ + 2).

Anal. Calcd. for C₁₇H₁₂ClN₅O₂: C, 57.72; H, 3.42; Cl, 10.02; N, 19.80. Found: C, 57.83; H, 3.61; Cl, 10.23; N, 19.93.

7-Chloro-4-(2-pyridylcarbamoylmethylene)-4,5-dihydrotetra-zolo[1,5-a]quinoxaline 10.

A solution of compound **2a** (2 g, 7.34 mmoles) and 2-aminopyridine (1.03 g, 11.0 mmoles) in dioxane (100 ml) was refluxed in an oil bath for 2 hours to give a clear solution, and the solvent was evaporated in vacuo to afford brown crystals. Recrystallization from dioxane/ethanol/water provided brown needles **10**, which were collected by suction filtration (0.45 g, 18%), mp 260-261°; ir: ν cm⁻¹ 1650, 1625, 1590, 1575, 1540, 1520; ms: m/z 339 (M*), 341 (M* + 2).

Anal. Calcd. for $C_{16}H_{11}ClN_{6}O$: C, 52.40; H, 3.02; Cl, 9.67; N, 30.55. Found: C, 52.53; H, 3.24; Cl, 9.84; N, 30.73.

7-Chloro-4-(3-pyridylcarbamoylmethylene)-4,5-dihydrotetrazolo-[1,5-a]quinoxaline 11.

A solution of compound **2a** (2 g, 7.34 mmoles) and 3-aminopyridine (1.03 g, 11.0 mmoles) in dioxane (100 ml) was refluxed in an oil bath for 1 hour to give a clear solution. The solvent was evapo-

rated in vacuo to afford yellow needles 11, which were triturated with ethanol/hexane and collected by suction filtration to obtain an analytically pure sample (1.52 g, 61%), mp 297-298°; ir: ν cm⁻¹ 1650, 1625, 1570, 1545, 1520; ms: m/z 339 (M*), 341 (M* + 2).

Anal. Calcd. for C₁₆H₁₁ClN₈O: C, 52.40; H, 3.02; Cl, 9.67; N, 30.55. Found: C, 52.63; H, 3.11; Cl, 9.73; N, 30.79.

REFERENCES AND NOTES

- [1] Y. Kurasawa, T. Kureyama, N. Yoshishiba, T. Okano, A. Takada, H. S. Kim and Y. Okamoto, J. Heterocyclic Chem., 30, 781 (1993).
- [2] Y. Kurasawa, N. Yoshishiba, T. Kureyama, A. Takada, H. S. Kim and Y. Okamoto, J. Heterocyclic Chem., in press.
 - [3] R. Mondelli and L. Merlini, Tetrahedron, 22, 3253 (1966).
- [4] Y. Kurasawa, Y. Okamoto and A. Takada, Chem. Pharm. Bull., 33, 1249 (1985).
 - [5] G. B. Barlin and T. J. Batterham, J. Chem. Soc. (B), 516 (1963).
 - [6] G. Kille and J.-P. Fleury, Bull. Soc. Chim. France, 4631 (1968).
- [7] W. Geiger, H. Boeshagen and H. Medenwald, Chem. Ber., 102, 1961 (1969).
- [8] The C₆-H, C₈-H and C₉-H proton signals of the species **A** and **B** in compounds **7-11** were assigned in a similar manner to those in compounds **3a,b** [1] and **4** [2].
- [9] A. Albert, Physical Methods in Heterocyclic Chemistry, Vol 1, A. R. Katritzky, ed, Academic Press, Inc., New York, 1963, p 73, and references cited therein.